CGCN Webinar Series: Rootstocks and research updates

Jim Willwerth, Phd

Brock University Department of Biological Sciences Cool Climate Oenology and Viticulture Institute

July 22, 2021

Cool Climate Oenology & Viticulture Institute

Brock University

- Brief background on rootstocks and their benefits
- Rootstock selection in Canada
- Ongoing rootstock trials in Ontario
 - Clone x rootstock evaluations
 - Cold Hardiness
- Climate change and rootstock considerations
- CCGN and need for domestic rootstock production

Matching grapevine material to the environment

- The selection of plant material is an important resource for climate adaptation
- Species or crossings of different species
- Cultivar
- Clone
- Rootstock
- Quality of material

)enology

What is a rootstock?

- Specialized stock material to which the grapevine cultivar (*scion*) with desirable fruit characteristics are grafted
- The shoot portion is called the *scion*
- The root portion (*rootstock*) provides the root system to the fused combination of genotypes
- Rootstocks almost always have high proportion of North American species in their genetic background

V. Rupestris

V. Berlandieri

The grafted grapevine

Photo credit: B. Cafroll

Photo Credit: Wikipedia

Rootstocks

- Strongly interact with scion genotypes ar modify:
 - Whole plant development
 - Biomass accumulation and partitioning
 - Phenology

 Rootstock breeding programs aim to improve pest resistance and adaptation to abiotic stresses

Why do we use rootstocks in Canada?

Cool Climate Oenology & Viticulture Institute Brock Univers

- Phylloxera resistance
- Nematode resistance
- Adaptability to:
 - High pH soils (lime)
 - Saline soils
 - "Wet Feet"
 - Drought
- 80% of world's vineyards use rootstocks

Photo Credit: L. Eads

Rootstock benefits

- Resistance ullet
 - Phylloxera, nematodes
- Tolerance •
 - Lime, Salinity, Water stress
- Growth \bullet
 - Control, shorten vegetative cycle
- Uptake •
 - Nutrients •

C. Sauv grafted to Riparia (center) and C3309 (L and R)

Photo courtesy: A. Reynolds

What rootstocks do we use in Canada?

- Our rootstock choices are largely mediated by:
 - Harsh winter climate and;
 - Relatively short growing season

Rootstocks must be resistant to phylloxera and nematodes, and adaptive to a wide range of soil conditions

• Soil water availability

Rootstock selection in Canada

- Many factors to consider when choosing a rootstock
 - Our grape growing regions have quite dramatic differences in soil types and climate.
 - Large variation in vintages
 - Wet growing seasons
 - Persistent drought
 - ⁻ Short periods of drought
 - ⁻ Dry summer and wet fall
 - Rootstocks have different degrees of resistance to drought, wet-feet, cold temperatures
 - Production goals larger vines + higher yields, smaller vines and yield/vine
- Canada's wine regions are diverse so there is not just one rootstock that is the "best"

Characteristics of common rootstocks in Canada (Modified from Cousins 2005, Shafer 2004).

Rootstock	Parentage	Ease of propagation	Phylloxera protection	Root-knot nematode resistance	Dagger nematode resistance	Calcareous soil adaptation	Soil Recommendation	Scion vigour
Riparia Gloire	V. riparia	High	High	Low	Medium	Low	Deep, moist, fertile soils	Low
3309C	V. riparia x V. rupestris	High	High	Low	Low	Low	Deep, well- drained, moist soils	Low to medium
101-14	V. riparia x V. rupestris	High	High	Medium	Medium	Low	Deep, moist, soils	Medium
SO4	V. riparia x V. berlandieri	High	High	Medium	Medium	Medium	Light, well- drained, low fertile soils	Medium
5C	V. riparia x V. berlandieri	High	High	Medium	Medium	Medium	Moist, heavy soils	Medium

Climate change and grape growing in Canada

- Climate changes are a reality
- Studies indicate a:
 - Rise of the average temperature
 - More heat waves and days with >30°C
 - Higher drought incidence
 - Reduced snow cover and increased rainfall in winter
 - More extreme weather events
 - We farm extremes and weather has a significant impact on production

₩\$

Cool Climate Oenology & Viticulture Institute

Evaluation trials and future development

- Cool Cimate Oenology & Viticulture Institute Brock University
- Specific scion/rootstock combinations may work well in some regions and very poorly in others; hence the need for regional rootstock trials.
- Rootstocks may help improve sustainability of wine regions through adaptation to climate change (i.e., drought, heat, new pests)
 - New plantings may use new scion material but possibly grafted to a more resilient rootstock (i.e., a more drought tolerant in BC)
 - We likely need a domestic and an international effort for more rootstocks as abiotic AND biotic threats continue to increase in our regions

Cultivar x clone x rootstock evaluations

- Cool Cimate Oenology & Viticulture Institute Brock University
- Funded through OGWRI/NSERC-CRD (Inglis, Willwerth, Kemp) and now CGCN/AAFC (Agri-Science Grape cluster)
- Industry partnerships for vineyard blocks
- Different soils, clones x rootstocks of core varieties

Regional Rootstock trials in Ontario

Cool Cimate Oenology & Viticulture Institute Brock University

- Trials began in 2016
- Examined variety x clone on different rootstocks in existing mature vineyards
- Newly planted variety x clone x rootstock trial vineyards in 2018
- 5 different varieties x different clones x SO4, C3309, Riparia Gloire, 101-14 and selected others (C1616, 1103P, 420A, 110R).
- Different soil types heavy clay loam and sandy loam
- Examining vine performance, yield components, fruit composition and oenological potential

Rootstock selection and hardiness?

- Many factors to consider when choosing a rootstock
- Rootstocks might affect cold hardiness indirectly
 - Many studies indicate rootstocks can greatly affect vigor and vine balance
 - Vines over-cropped tend to be less cold tolerant, especially on year with poor weather
 - Crop load (yield per vine (kg)/vine size (g)) can help evaluate if the vine is over or under-cropped
- Winter hardiness of young vines grafted to different rootstocks was researched in the 80s (Miller et al. 1988)
 - Concluded that of the 3 rootstock tested (5BB, SO4, 3309), 3309 was the most suited to cold temperature own-rooted had the worst performance of all.

What if the vines we planted were more tolerant?

- Can we find, within specific cultivars, <u>clones</u> that are more cold tolerant?
 - Could better clone selection reduce cold damage to cold tender cultivars?

- Does the **rootstock** influence the cold tolerance?
 - Could we use rootstock to improve cold tolerance?

How can clone x rootstock impact cold tolerance? Hébert-Haché et al. (2021) Am J. Enol. Vitic.

- Study using existing vineyard plantings
- 4 different Sauvignon blanc clones on one common rootstock (SO4) and 2 different Riesling clones on 3 different rootstock (3309, SO4, Riparia Gloire)

Other rootstock trials in Ontario

- Cabernet franc
 - 327 x 3309, 101-14, Riparia Gloire; 214 x 101-14
- Riesling
 - 21B, 239,49 x 3309 and 21B, 9 x SO4

H. Fisher and A. Rahemi

South Coast vineyard studies (sandy, vigorous soils) Different V. vinifera grafted to different rootstocks Pinot noir grafted to different V. Riparia accessions as rootstocks

Rootstock selection

- Yearly differences, but overall appears less important for cold hardiness than cultivar and/or clone
- All vines had similar crop load and were considered "in balance"

Clone x rootstock interactions

- The clone x rootstock interaction was significant almost every sampling date on the first year of the study
- Clone 49 performed better on SO4 rootstock, but clone 239 performed better on Riparia Gloire.
- Important yearly variation

* indicates a significant clone x rootstock interaction (p < 0.05)

Cold hardiness considerations

- Cultivar, clones and even rootstocks can impact hardiness but it is dynamic and growing season influences should be taken into consideration.
- Vine material matched to site conditions will be most resilient to effects of climate change and just weather in general
- Clone x rootstock should be taken into consideration in future studies and reporting of cultivar hardiness
- Poor rootstock choice has an immediate impact on winter survival

Quality of material

- Cool Cimate Oenology & Viticulture Institute Brock University
- Important for quality, general performance and resistance to stress
- Quality of material
 - Good source of material
 - True to type
 - Clean from major viruses or diseases

Domestic Rootstock production

- Canada's vineyards depend on grafted grapevines
- Viruses are graft transmissible in nature
 - Spread through vine propagation
- Dirty scion material AND rootstock material can lead to vine health issues and continued spread of viruses through nurseries
- It is essential to have clean rootstock material as part of the Domestic clean plant program
- Therefore, we need a continued focus on a **domestic** clean plant program and clean rootstocks right here in Canada vs. importation
 - A national effort through CGCN, institutions, industry including nurseries
 - What would happen if the borders were shut down for imported material?

Conclusion

- Rootstocks are essential for Canadian vineyard production
- Many benefits:
 - Resistance to biotic pests (phylloxera, nematodes)
 - Tolerance to different soils and abiotic stress (i.e. drought, wet feet, cold)
 - Growth, vigour
 - Uptake of nutrients
- Regional studies of cultivars, clones and rootstocks are increasingly important
- Rootstocks will be an important adaptation strategy to climate change
- Domestic rootstock production is a critical component for CGCN's program

And thanks to our funding and industry partners

Cool Climate Oenology & Viticulture Institute

Agriculture and

Agri-Food Canada

Agriculture et

Agroalimentaire Canada

Canadian Grapevine Certification Network

CGCN-RCCV

Réseau Canadien de Certification de la Vigne

Grape Growers